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Lemma 0.1 (for Exercise 1a). Let R be a commutative ring with an ideal I and let M be

an R-module. Then
M®@gpR/I=M/IM

Proof. Define ¢ : M x R/I — M/IM by (m,z) — Tm where m € M,x € R, and T =
x+ 1€ R/I. We claim that this is well-defined. If (m/,2’) = (m, =), then m = m’ and

T=1 = rx—2d €l = (z—2)Y)melIM = Tm=21m

Thus ¢ is well-defined. Now we show that ¢ is R-bilinear. Let x,2',y € R and m,m’ € M.
Then

d(m+m'.T) = x(m +m/) = Tm + zm’ = ¢(m, T) + d(m, )
O(m, T+ 2 = (x+ x')Ym = Tm + 2'm = ¢(m, T) + ¢(m, =')
¢(ym,T) = yam = yzm = yd(m, T)
¢(m, yT) = ¢(m,yzr) = yrm = yzm = y(m, T)

Then by the universal property of the tensor product, there exists an R-module homomor-
phism ¢ : M ®g R/I — M/IM so that the following diagram commutes.

M x R/I —2— M ®gR/I
M/IM

that is, ¢(m ® T) = ¢(m,T) = Tm. Define ¢ : M — M ®x R/I by m — m ® 1. Then 1 is
an R-module homomorphism because

Ym+m)=(m+m)@I=m
Y(em) = (zm) @1 =z(m ®

We claim that IM C ker. Every element of I M is of the form am where a € I and m € M.
Thena=1=0in R/I, so

Ylam) = (am)@1=mx@a=m®0=0
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Thus the map J : M/IM — M ®p R/I given by m — m ® 1 is a well-defined R-module
homomorphism. Finally, we claim that ¢ is an inverse to ¢.

S0(m) = dm @ T) = Tm=m
Fo(m ©F) = g(zm) = (am) ®

=mKT
Note that it is enough to check that {&&5 = Id on simple tensors since the simple tensors

generate M ®@g R/I. Thus ¢ and ¢ are inverses, so ¢ is an isomorphism of R-modules. [

Proposition 0.2 (Exercise 1a). Let A be an abelian group and n > 0 an integer. Then
ARz Z/nZ = A/nA

Proof. Take R = Z, M = A, and I = nZ and apply the previous lemma. Note that
nA = (nZ)A.
O

Lemma 0.3 (for Exericse 1b). Let m,n € Z. The order of i in Z/mZ is Conse-

quently, n(Z/mZ) is cyclic of order

gcd( m)’

(n m)’
Proof The order of m is the smallest positive integer multiple of n that divides m which is
sed(nomy- Then note that n + mZ generates n(Z/mZ), so the orders match. O

Lemma 0.4 (for Exercise 1b). Let m,n € Z and d = ged(m,n). Then
(Z)mZ)|n(Z)mZ) = Z]dZ

Proof. The quotient of a cyclic group is cyclic. The previous lemma gives the order of
n/(Z/mZ) as Hence (Z/mZ)/n(Z/mZ) is cyclic of order

gcd(n m)’
UL ged(n, m)
(zeatnmy)

[

Proposition 0.5 (Exercise 1b). Let m,n € Z and d = ged(m,n). Then

Z]/mZ Qg Z/nZ = 7./dZ
Proof. Using Exercise 1(a) with A = Z/mZ, and then applying the above lemma,
L]mZ Rz Z/nZ = (Z)mZ)/n(Z/mZ) = 7/dZ

[

Lemma 0.6 (for Exercise 2a). Let A be a nonzero finitely generated torsion abelian group.
Then A @z A # 0.



Proof. By the classification of finitely generated abelian groups,

N
A= Pz/ki
=1

where k; € {2,3,...} so that ky|ka|ks| ... |kn. Let d;; = ged(k;, kj). Then d;; = min(k;, k;),
by the divisor property. Applying the distributivity of tensor product over direct sum,

enns (e o (ane) = () v e

= é <@ (Z/kZ @ Z/kiZ)> ~ D 2/k,Z 02 /KT = P 2/ dyZ

j=1

This direct sum can only be trivial if each each summand Z/d;;Z is trivial, that is, if each
d;; = 1. But no d;; can be 1, since d;; = min(k;, k;) and k;, k; > 2. Hence A ®z A is
nontrivial. O

Proposition 0.7 (Exercise 2a). Let A be a nonzero finitely generated abelian group. Then
A®z A#D0.

Proof. Using the distributive property of the tensor product over direct sum, we get

A Kz A= (Afree ¥ Ator) Xz (Afree S¥ Ator)
= (Afree ®Z Afree) SY (Ator ®Z Afree) S¥ (Afree ®Z Ator) S¥) (Ator ®Z Ator)

Note that a direct sum is trivial only if each direct summand is trivial. If A is free, then
A ®g A is free of with rank equal to the square of the rank of A by Corollary 2.4 (Lang), so
A ®z A is not zero. So we can assume that A is not free, that is, Ay, # 0. Then, by the
previous lemma, A, ®7z Aior # 0, so one summand is nontrivial, hence A ®z A # 0. O

Proposition 0.8 (Exercise 2b). Q/Z ®7 Q/Z = 0.

Proof. 1t suffices to show that for 7,7 € Q/Z, we have T® 7y = 0, since elements of this form
generate Q/Z ®7, Q/Z. Let T =x+Z and § =y + Z € Q/Z, where x,y € Q. There exists
n € Z so that ny € Z, so then ny = ny + Z = 0. Then

TRY= (%E)@@Z (%—FZ)@(ny—i—Z): (%+Z)®0=0

Proposition 0.9 (Exercise 2¢). The tensor functor is not always left exact.

Proof. Consider the exact sequence of Z-modules
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where ¢(x) = 2x. Considering Z/27Z as a Z-module, we get an induced sequence

0 —— 705 (2/22) —— &y (Z)27)

where p(z @ y) = dp(z) @y = 22) @y =2 ® (2y) =2 ®0 =0, so0 ¢ is the trivial map. We
know that Z ®gz (Z/27) = 7Z./2Z, so ¢ is the trivial endomorphism of Z/27Z, which is not
injective. Thus the induced sequence is not left exact. O

Proposition 0.10 (Chapter 3, Exercise 15a, the Five Lemma). Consider the following
commutative diagram of R-modules, where each row is exact:

M, 1 s M, o2 M, #3 M, [on M

fll le fsl f4l f5l
N, 1 N, 2 s Ny N N, s s N

Suppose that fi is surjective and fo, fy are injective. Then fs is injective. (Note: We don’t
need Ms, N5 and their maps.)

Proof. Let x € ker f5. Then

rxekerfs = f3(x) =0 = Ys3f3(x) =0
Vsfs = faps = fags(x) =0 = ¢3(x) € ker f4
fa injective = ¢3(x) =0 = x € ker ¢3
ker o3 = im ¢y = Jy € My, o(y) =
fada =Uafs = fada(y) =0 = Uafa(y) =0 = fa(y) € keriyy
keriy, =im1y = fao(y) € imyy = Ja € Ni,¢¥1(a) = fo(y)
f1 surjective = 3z € My, fi(2) =a = 1 f1(2) = ¥1(a) = fa(y)
Uifi = fapr = far(2) = fa(y)
fo injective = ¢1(2) =y = ¢a1(2) = Pa(y) = x
ime; =kergs = ¢y =0 = Po1(2) =x =0
Thus ker f3 = 0, so f3 is injective. O]



Proposition 0.11 (Chapter 3, Exercise 15b, the Five Lemma). Consider the following
commutative diagram of R-modules, where each row is exact:

M, b1 M, P2 M ¢3 s M, TN M
f1 l P l f3 l fa J{ f5 l
N, Y1 N, P2 | Ns P3 s N, P4 N

Suppose that f5 is injective and fo, fy are surjective. Then f3 is surjective. (Note: We don’t
need My, My for this.

Proof. Let a € N3. Then

fa surjective = Jx € My, fa(z) = 13(a)
ims = kerypy = 13(a) € ker iy
[501 = Yafs = [504(x) = Yafa(x) = Ysi3(a) = 0
f5 injective = ¢4(x) =0 = x € ker ¢y
ker ¢y = im ¢y = Jy € M3, ¢3(y) = o
fads = Ysfs = Usfs(y) = faps(y) = fulx) = Y3(a)
3 is R-linear = Y3(f3(y) —a) =0 = f3(y) — a € ker)g
ker i, = imy = Ib € Na,1ho(b) = f3(y) — a
fo surjective = Jz € My, fo(z) = b
f3po = Pafa = f3pa(2) = Yafa(2) = ¥u(b) = f3(y) —a
f3is R-linear = a = f3(y) — fad2(2) = fs(y — ¢2(2)) = a cimfy

Thus f5 is surjective. O]

Proposition 0.12 (Chapter 3, Exercise 15¢, part one). Suppose we have a commutative
diagram with exact rows,

00— M —— M —— M" 0
A
00— N — 5 N —— N —— 0

Suppose that f, h are isomorphisms. Then g is an isomorphism.

Proof. By adding the tacit isomorphisms 0 — 0 on both ends, we have a diagram that
satisfies the hypotheses of parts (a) and (b), since f,h are bijective by hypothesis. Thus by
part (a), g is injective, and by part (b), g is surjective. Thus it is an isomorphism. O

In the previous proposition, we assumed that there was a homomorphism ¢ : M — N that
makes two squares commute. However, if one has a diagram with exact rows of the form

0 > M’ > M M > 0

/| |

0 > N/ > N > N” > 0




then M and N need not be isomorphic. For example,

1—1

0 > 7 > Z 7]27. —— 0
Idl Idl
0 ——z 28 707/97 % 7)27 — 0
)=

The vertical arrows are isomorphisms. The top row is exact because the image of 1 — 2 is
27, which gets mapped to zero under the projection Z — Z/2Z. The bottom row is exact
because the image of (1 — (1,0) is Z & 0, which gets mapped to zero under (1,0) — 0.
However, Z is not isomorphic to Z & Z /27, because the former is torsion free, while the
latter has one element of order 2.

Lemma 0.13 (for Chapter XX, Exercise 1). Let

. dit1 . d? .
. —— Bt > B S

be a sequence of R-modules and R-module homomorphisms. Suppose there exist R-module
homomorphisms h' : E* — E*™ so that d o hi + hi ™' o d' = Idgi, and d o d' = 0 for all
1. Then the sequence is exact.

Proof. The hypothesis that d“! o d* = 0 tells us that im d“*' C ker d**! for each i. To get
the reverse inclusion, let # € kerd’. Then hi=! o d’ = 0 so

(dtoh' +htod)(z) =ldgi(z) =2 = d"'(h'(2)) =2 = =z €imd"
Hence ker d* C im d**'. Thus the sequence is exact. O

Proposition 0.14 (Chapter XX, Exercise 1). Let S be a set. The standard complex obtained
from S is exact, and hence is a resolution of 7.

Proof. Fix z € S. Define h, : E* — E"™! by h(xg,...,x;) = (2,20, ...,x;). For convenience,
we'll just write h instead of h,. Note that h is a homomorphism. We claim that d**! o h +
hod =Idg:. It suffices to show that it acts as the identity on the generators.

(d*oh+hod)(w,...,x;) =d™ oh(wy,...,x;) +hod (o,. ..,z

= d" (2,20, 1) + h (Z(—l)j(fﬁm SESEINEE ’xi)>

Jj=0

= (33'0, cee 7xi) + Z(_l)j+1(27$0a cee 7§j7 cee 7$i) + Z(_l)j<za$07 cee 753\]" s >$i)
§=0

7 7

= (20, ) = Y (=1 (2,20, .. Ty, o ymi) + > (=1 (2,20, By, 24)

j=0 7=0

:(IL'(),...,J]Z‘)



Thus d*'oh+ hod' = Idg:. We also claim that d’ o d'*! = 0. As before, it suffices to show
that d; o d;;1 = 0 for generators of F;,q.

i+1 i+1
d'o di“(ﬂfo, o Tig1) = d’ (Z(‘l)j(l’m e 7:/U\j> e #&'H)) = Z(_l)jdi(l"o, . 7@, e Tiy)

j=0 Jj=0

To apply d' to (zo,...,Tj,...,Ti+1), we have to be careful about the indices, because for
k > j the power of (—1) no longer matches the subscript on the z;’s

d'(z0,.. By mign) = Y (=D (@0, Bhy o By Tig)

k<j

+ E .1'0, ..,LCj,...,.Z'k,...,ZCZ'+1)
k>j

Now we can plug this in to continue the calculation.

i+1
di © di+1(x0a s 7'Ii+1) = Z<_1)] <Z<_1)k('r07 B afika s 7/'r\j’ s 7xi+1>

j=0 k<j
+ E Io, ..,IL‘j,...,ZEk,...,l‘i+1)>
k>j
_ ]+k = ~
E (0« s Thy oy Ty e vy Tig)
k<j
2 : j+k— 1 ~ ~
+ ] :L’O,...,xj,...,xk,...,xiﬂ)
<k

Now notice that j, k are dummy variables, so in the second summation we can interchange
their roles, and pull out a (—1), to see that the two summations exactly cancel out.

S (=1 @o, o B By mia) — Y (D) (@, By T i) = 0

k<j k<j

Thus we have shown that d*!' oh +hod’ = Idg: and d; o d;; = 0, so applying the previous
lemma, the sequence is exact. O

Proposition 0.15 (Exercise 6a). Let T be an injective object in the category of abelian
groups. Then T is divisible.

Proof. Suppose that T is not divisible. Then there exists z € T and n € N so that = & nT.
Then (zx) is a cyclic subgroup of T'; and we have the inclusion homomorphism ¢ : (x) < T
First suppose that () is infinite. Then the map ¢ : (x) — Z defined by x +— n is injective,
so by injectivity of T there exists f : Z — T so that the following diagram commutes.

> () ANy

0




This implies that
nf(l) = f(n) = fo(x) =1(z) =2 = zenT

Now suppose that (z) is finite, with order |z| € N. Let m = n|z|, and define ¢ : (x) — Z/mZ
by kx +— kn + mZ. We check that ¢ is well-defined. If kx = k'z, then

kr =Kz = |zl|(k— k) = m|(k—K)n = kn—k'nemZ
— kn+mZ=kKn+mZ = P(kz) = (k)

Thus v is well-defined. We claim that ¢ is injective.
kr € kerp = kn+mZ =mZ = kn € mZ = mlkn = |z||k = ka =0

Thus v is injective. By injectivity of T', there exists g : Z/mZ — T so that the following
diagram commutes.

y (2) —2 Z/mZ
T
This implies that
ng(1+mZ) = g(n+mZ) = g(x) = 1(z) =2 = x €nT

We constructed = so that z &€ nT’, but we showed that in either of two cases, x € nT. This
is a contradiction, so we conclude that T is divisible. O

Proposition 0.16 (Exercise 6b). A direct product of injective modules is injective.

Proof. Let R be a commutative ring and {M;};e; a collection of R-modules. Let M =
Hie[ M; and let m; : [[, M; — M, be the projection onto the ith factor. Let X,Y be R-
modules and ¢ : X — Y be an injective homomorphism, and let f : X — []. M; be a
homomorphism. Then we have homomorphisms 7; f : X — M;, so by injectivity of M;, there
exists a homomorphism f; : Y — M; making the following diagram commute:

0 ¢>_Y

> X
L fi
M;

Then, by the universal property of the direct product, there is a unique morphism ]7: Y —
[L; M; so that fm; = f;. In particular, f is the map y — (f;(y)). That is, the following
diagram commutes.

ml .
M;



Putting these diagrams together, we get the following diagram:

> X f >
fl /

|

M;

0 Y

We just need to check commutativity of the X, Y, ], M; triangle. Using the commutativity
of the other triangles, for x € X we have

o) = (fio(@)) = (mf () = f(x)

Thus f(b = f, so the required triangle commutes. Hence [[, M; is injective. O



