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Lemma 0.1 (for Exercise 1a). Let R be a commutative ring with an ideal I and let M be
an R-module. Then

M ⊗R R/I ∼= M/IM

Proof. Define φ : M × R/I → M/IM by (m,x) 7→ xm where m ∈ M,x ∈ R, and x =
x+ I ∈ R/I. We claim that this is well-defined. If (m′, x′) = (m,x), then m = m′ and

x = x′ =⇒ x− x′ ∈ I =⇒ (x− x′)m ∈ IM =⇒ xm = x′m

Thus φ is well-defined. Now we show that φ is R-bilinear. Let x, x′, y ∈ R and m,m′ ∈ M .
Then

φ(m+m′, x) = x(m+m′) = xm+ xm′ = φ(m,x) + φ(m,x′)

φ(m,x+ x′ = (x+ x′)m = xm+ x′m = φ(m,x) + φ(m,x′)

φ(ym, x) = yxm = yxm = yφ(m,x)

φ(m, yx) = φ(m, yx) = yxm = yxm = yφ(m,x)

Then by the universal property of the tensor product, there exists an R-module homomor-
phism φ̃ : M ⊗R R/I →M/IM so that the following diagram commutes.

M ×R/I M ⊗R R/I

M/IM

⊗

φ
φ̃

that is, φ̃(m⊗ x) = φ(m,x) = xm. Define ψ : M → M ⊗R R/I by m 7→ m⊗ 1. Then ψ is
an R-module homomorphism because

ψ(m+m′) = (m+m′)⊗ 1 = m⊗ 1 +m′ ⊗ 1 = ψ(m) + ψ(m′)

ψ(xm) = (xm)⊗ 1 = x(m⊗ 1) = xψ(m)

We claim that IM ⊂ kerψ. Every element of IM is of the form am where a ∈ I and m ∈M .
Then a = I = 0 in R/I, so

ψ(am) = (am)⊗ 1 = m⊗ a = m⊗ 0 = 0
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Thus the map ψ̃ : M/IM → M ⊗R R/I given by m 7→ m ⊗ 1 is a well-defined R-module

homomorphism. Finally, we claim that ψ̃ is an inverse to φ̃.

φ̃ψ̃(m) = φ̃(m⊗ 1) = 1m = m

ψ̃φ̃(m⊗ x) = ψ̃(xm) = (xm)⊗ 1 = m⊗ x

Note that it is enough to check that ψ̃φ̃ = Id on simple tensors since the simple tensors
generate M ⊗R R/I. Thus ψ̃ and φ̃ are inverses, so φ̃ is an isomorphism of R-modules.

Proposition 0.2 (Exercise 1a). Let A be an abelian group and n > 0 an integer. Then

A⊗Z Z/nZ ∼= A/nA

Proof. Take R = Z, M = A, and I = nZ and apply the previous lemma. Note that
nA = (nZ)A.

Lemma 0.3 (for Exericse 1b). Let m,n ∈ Z. The order of n in Z/mZ is m
gcd(n,m)

. Conse-

quently, n(Z/mZ) is cyclic of order m
gcd(n,m)

.

Proof. The order of n is the smallest positive integer multiple of n that divides m which is
m

gcd(n,m)
. Then note that n+mZ generates n(Z/mZ), so the orders match.

Lemma 0.4 (for Exercise 1b). Let m,n ∈ Z and d = gcd(m,n). Then

(Z/mZ)/n(Z/mZ) ∼= Z/dZ

Proof. The quotient of a cyclic group is cyclic. The previous lemma gives the order of
n/(Z/mZ) as m

gcd(n,m)
. Hence (Z/mZ)/n(Z/mZ) is cyclic of order

m

( m
gcd(n,m)

)
= gcd(n,m)

Proposition 0.5 (Exercise 1b). Let m,n ∈ Z and d = gcd(m,n). Then

Z/mZ⊗Z Z/nZ ∼= Z/dZ

Proof. Using Exercise 1(a) with A = Z/mZ, and then applying the above lemma,

Z/mZ⊗Z Z/nZ ∼= (Z/mZ)/n(Z/mZ) ∼= Z/dZ

Lemma 0.6 (for Exercise 2a). Let A be a nonzero finitely generated torsion abelian group.
Then A⊗Z A 6= 0.
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Proof. By the classification of finitely generated abelian groups,

A ∼=
N⊕
i=1

Z/kiZ

where ki ∈ {2, 3, . . .} so that k1|k2|k2| . . . |kN . Let dij = gcd(ki, kj). Then dij = min(ki, kj),
by the divisor property. Applying the distributivity of tensor product over direct sum,

A⊗Z A ∼=

(
N⊕
j=1

Z/kjZ

)
⊗Z

(
N⊕
i=1

Z/kiZ

)
∼=

N⊕
i=1

((
N⊕
j=1

Z/kjZ

)
⊗Z Z/kiZ

)

∼=
N⊕
i=1

(
N⊕
j=1

(Z/kjZ⊗Z Z/kiZ)

)
∼=
⊕
i,j

Z/kjZ⊗Z Z/kiZ ∼=
⊕
i,j

Z/dijZ

This direct sum can only be trivial if each each summand Z/dijZ is trivial, that is, if each
dij = 1. But no dij can be 1, since dij = min(ki, kj) and ki, kj ≥ 2. Hence A ⊗Z A is
nontrivial.

Proposition 0.7 (Exercise 2a). Let A be a nonzero finitely generated abelian group. Then
A⊗Z A 6= 0.

Proof. Using the distributive property of the tensor product over direct sum, we get

A⊗Z A = (Afree ⊕ Ator)⊗Z (Afree ⊕ Ator)
∼= (Afree ⊗Z Afree)⊕ (Ator ⊗Z Afree)⊕ (Afree ⊗Z Ator)⊕ (Ator ⊗Z Ator)

Note that a direct sum is trivial only if each direct summand is trivial. If A is free, then
A⊗Z A is free of with rank equal to the square of the rank of A by Corollary 2.4 (Lang), so
A ⊗Z A is not zero. So we can assume that A is not free, that is, Ator 6= 0. Then, by the
previous lemma, Ator ⊗Z Ator 6= 0, so one summand is nontrivial, hence A⊗Z A 6= 0.

Proposition 0.8 (Exercise 2b). Q/Z⊗Z Q/Z = 0.

Proof. It suffices to show that for x, y ∈ Q/Z, we have x⊗ y = 0, since elements of this form
generate Q/Z⊗Z Q/Z. Let x = x + Z and y = y + Z ∈ Q/Z, where x, y ∈ Q. There exists
n ∈ Z so that ny ∈ Z, so then ny = ny + Z = 0. Then

x⊗ y =
(n
n
x
)
⊗ y =

(x
n

+ Z
)
⊗ (ny + Z) =

(x
n

+ Z
)
⊗ 0 = 0

Proposition 0.9 (Exercise 2c). The tensor functor is not always left exact.

Proof. Consider the exact sequence of Z-modules

0 −−−→ Z φ−−−→ Z
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where φ(x) = 2x. Considering Z/2Z as a Z-module, we get an induced sequence

0 −−−→ Z⊗Z (Z/2Z)
φ̃−−−→ Z⊗Z (Z/2Z)

where φ̃(x⊗ y) = φ(x)⊗ y = (2x)⊗ y = x⊗ (2y) = x⊗ 0 = 0, so φ̃ is the trivial map. We

know that Z ⊗Z (Z/2Z) ∼= Z/2Z, so φ̃ is the trivial endomorphism of Z/2Z, which is not
injective. Thus the induced sequence is not left exact.

Proposition 0.10 (Chapter 3, Exercise 15a, the Five Lemma). Consider the following
commutative diagram of R-modules, where each row is exact:

M1
φ1−−−→ M2

φ2−−−→ M3
φ3−−−→ M4

φ4−−−→ M5

f1

y f2

y f3

y f4

y f5

y
N1

ψ1−−−→ N2
ψ2−−−→ N3

ψ3−−−→ N4
ψ5−−−→ N5

Suppose that f1 is surjective and f2, f4 are injective. Then f3 is injective. (Note: We don’t
need M5, N5 and their maps.)

Proof. Let x ∈ ker f3. Then

x ∈ ker f3 =⇒ f3(x) = 0 =⇒ ψ3f3(x) = 0

ψ3f3 = f4φ3 =⇒ f4φ3(x) = 0 =⇒ φ3(x) ∈ ker f4

f4 injective =⇒ φ3(x) = 0 =⇒ x ∈ kerφ3

kerφ3 = imφ2 =⇒ ∃y ∈M2, φ2(y) = x

f3φ2 = ψ2f2 =⇒ f3φ2(y) = 0 =⇒ ψ2f2(y) = 0 =⇒ f2(y) ∈ kerψ2

kerψ2 = imψ1 =⇒ f2(y) ∈ imψ1 =⇒ ∃a ∈ N1, ψ1(a) = f2(y)

f1 surjective =⇒ ∃z ∈M1, f1(z) = a =⇒ ψ1f1(z) = ψ1(a) = f2(y)

ψ1f1 = f2φ1 =⇒ f2φ1(z) = f2(y)

f2 injective =⇒ φ1(z) = y =⇒ φ2φ1(z) = φ2(y) = x

imφ1 = kerφ2 =⇒ φ2φ1 = 0 =⇒ φ2φ1(z) = x = 0

Thus ker f3 = 0, so f3 is injective.
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Proposition 0.11 (Chapter 3, Exercise 15b, the Five Lemma). Consider the following
commutative diagram of R-modules, where each row is exact:

M1
φ1−−−→ M2

φ2−−−→ M3
φ3−−−→ M4

φ4−−−→ M5

f1

y f2

y f3

y f4

y f5

y
N1

ψ1−−−→ N2
ψ2−−−→ N3

ψ3−−−→ N4
ψ4−−−→ N5

Suppose that f5 is injective and f2, f4 are surjective. Then f3 is surjective. (Note: We don’t
need M1,M2 for this.

Proof. Let a ∈ N3. Then

f4 surjective =⇒ ∃x ∈M4, f4(x) = ψ3(a)

imψ3 = kerψ4 =⇒ ψ3(a) ∈ kerψ4

f5φ4 = ψ4f4 =⇒ f5φ4(x) = ψ4f4(x) = ψ4ψ3(a) = 0

f5 injective =⇒ φ4(x) = 0 =⇒ x ∈ kerφ4

kerφ4 = imφ3 =⇒ ∃y ∈M3, φ3(y) = x

f4φ3 = ψ3f3 =⇒ ψ3f3(y) = f4φ3(y) = f4(x) = ψ3(a)

ψ3 is R-linear =⇒ ψ3(f3(y)− a) = 0 =⇒ f3(y)− a ∈ kerψ3

kerψ2 = imψ2 =⇒ ∃b ∈ N2, ψ2(b) = f3(y)− a
f2 surjective =⇒ ∃z ∈M2, f2(z) = b

f3φ2 = ψ2f2 =⇒ f3φ2(z) = ψ2f2(z) = ψ2(b) = f3(y)− a
f3 is R-linear =⇒ a = f3(y)− f3φ2(z) = f3(y − φ2(z)) =⇒ a ∈ im f3

Thus f3 is surjective.

Proposition 0.12 (Chapter 3, Exercise 15c, part one). Suppose we have a commutative
diagram with exact rows,

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

f

y g

y h

y
0 −−−→ N ′ −−−→ N −−−→ N ′′ −−−→ 0

Suppose that f, h are isomorphisms. Then g is an isomorphism.

Proof. By adding the tacit isomorphisms 0 → 0 on both ends, we have a diagram that
satisfies the hypotheses of parts (a) and (b), since f, h are bijective by hypothesis. Thus by
part (a), g is injective, and by part (b), g is surjective. Thus it is an isomorphism.

In the previous proposition, we assumed that there was a homomorphism g : M → N that
makes two squares commute. However, if one has a diagram with exact rows of the form

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

f

y h

y
0 −−−→ N ′ −−−→ N −−−→ N ′′ −−−→ 0
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then M and N need not be isomorphic. For example,

0 −−−→ Z 17→2−−−→ Z 17→1−−−→ Z/2Z −−−→ 0

Id

y Id

y
0 −−−→ Z 17→(1,0)−−−−→ Z⊕ Z/2Z (1,0) 7→0−−−−→

(0,1) 7→1
Z/2Z −−−→ 0

The vertical arrows are isomorphisms. The top row is exact because the image of 1 7→ 2 is
2Z, which gets mapped to zero under the projection Z 7→ Z/2Z. The bottom row is exact
because the image of (1 7→ (1, 0) is Z ⊕ 0, which gets mapped to zero under (1, 0) 7→ 0.
However, Z is not isomorphic to Z ⊕ Z/2Z, because the former is torsion free, while the
latter has one element of order 2.

Lemma 0.13 (for Chapter XX, Exercise 1). Let

. . . −−−→ Ei+1 di+1

−−−→ Ei di−−−→ Ei−1 −−−→ . . .

be a sequence of R-modules and R-module homomorphisms. Suppose there exist R-module
homomorphisms hi : Ei → Ei+1 so that di+1 ◦ hi + hi−1 ◦ di = IdEi, and di+1 ◦ di = 0 for all
i. Then the sequence is exact.

Proof. The hypothesis that di+1 ◦ di = 0 tells us that im di+1 ⊂ ker di+1 for each i. To get
the reverse inclusion, let x ∈ ker di. Then hi−1 ◦ di = 0 so

(di+1 ◦ hi + hi−1 ◦ di)(x) = IdEi(x) = x =⇒ di+1(hi(x)) = x =⇒ x ∈ im di+1

Hence ker di ⊂ im di+1. Thus the sequence is exact.

Proposition 0.14 (Chapter XX, Exercise 1). Let S be a set. The standard complex obtained
from S is exact, and hence is a resolution of Z.

Proof. Fix z ∈ S. Define hz : Ei → Ei+1 by h(x0, . . . , xi) = (z, x0, . . . , xi). For convenience,
we’ll just write h instead of hz. Note that h is a homomorphism. We claim that di+1 ◦ h +
h ◦ di = IdEi . It suffices to show that it acts as the identity on the generators.

(di+1 ◦ h+ h ◦ di)(x0, . . . , xi) = di+1 ◦ h(x0, . . . , xi) + h ◦ di(x0, . . . , xi)

= di+1(z, x0, . . . , xi) + h

(
i∑

j=0

(−1)j(x0, . . . , x̂j, . . . , xi)

)

= (x0, . . . , xi) +
i∑

j=0

(−1)j+1(z, x0, . . . , x̂j, . . . , xi) +
i∑

j=0

(−1)j(z, x0, . . . , x̂j, . . . , xi)

= (x0, . . . , xi)−
i∑

j=0

(−1)j(z, x0, . . . , x̂j, . . . , xi) +
i∑

j=0

(−1)j(z, x0, . . . , x̂j, . . . , xi)

= (x0, . . . , xi)
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Thus di+1 ◦ h+ h ◦ di = IdEi . We also claim that di ◦ di+1 = 0. As before, it suffices to show
that di ◦ di+1 = 0 for generators of Ei+1.

di ◦ di+1(x0, . . . , xi+1) = di

(
i+1∑
j=0

(−1)j(x0, . . . , x̂j, . . . , xi+1)

)
=

i+1∑
j=0

(−1)jdi(x0, . . . , x̂j, . . . , xi+1)

To apply di to (x0, . . . , x̂j, . . . , xi+1), we have to be careful about the indices, because for
k > j the power of (−1) no longer matches the subscript on the xi’s.

di(x0, . . . , x̂j, . . . , xi+1) =
∑
k<j

(−1)k(x0, . . . , x̂k, . . . , x̂j, . . . , xi+1)

+
∑
k>j

(−1)k−1(x0, . . . , x̂j, . . . , x̂k, . . . , xi+1)

Now we can plug this in to continue the calculation.

di ◦ di+1(x0, . . . , xi+1) =
i+1∑
j=0

(−1)j

(∑
k<j

(−1)k(x0, . . . , x̂k, . . . , x̂j, . . . , xi+1)

+
∑
k>j

(−1)k−1(x0, . . . , x̂j, . . . , x̂k, . . . , xi+1)

)
=
∑
k<j

(−1)j+k(x0, . . . , x̂k, . . . , x̂j, . . . , xi+1)

+
∑
j<k

(−1)j+k−1(x0, . . . , x̂j, . . . , x̂k, . . . , xi+1)

Now notice that j, k are dummy variables, so in the second summation we can interchange
their roles, and pull out a (−1), to see that the two summations exactly cancel out.∑

k<j

(−1)j+k(x0, . . . , x̂k, . . . , x̂j, . . . , xi+1)−
∑
k<j

(−1)k+j(x0, . . . , x̂k, . . . , x̂j, . . . , xi+1) = 0

Thus we have shown that di+1 ◦ h+ h ◦ di = IdEi and di ◦ di+1 = 0, so applying the previous
lemma, the sequence is exact.

Proposition 0.15 (Exercise 6a). Let T be an injective object in the category of abelian
groups. Then T is divisible.

Proof. Suppose that T is not divisible. Then there exists x ∈ T and n ∈ N so that x 6∈ nT .
Then 〈x〉 is a cyclic subgroup of T , and we have the inclusion homomorphism ι : 〈x〉 ↪→ T .
First suppose that 〈x〉 is infinite. Then the map φ : 〈x〉 → Z defined by x 7→ n is injective,
so by injectivity of T there exists f : Z→ T so that the following diagram commutes.

0 〈x〉 Z

T

ι

φ

f
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This implies that
nf(1) = f(n) = fφ(x) = ι(x) = x =⇒ x ∈ nT

Now suppose that 〈x〉 is finite, with order |x| ∈ N. Let m = n|x|, and define ψ : 〈x〉 → Z/mZ
by kx 7→ kn+mZ. We check that ψ is well-defined. If kx = k′x, then

kx = k′x =⇒ |x|
∣∣(k − k′) =⇒ m|(k − k′)n =⇒ kn− k′n ∈ mZ

=⇒ kn+mZ = k′n+mZ =⇒ ψ(kx) = ψ(k′x)

Thus ψ is well-defined. We claim that ψ is injective.

kx ∈ kerψ =⇒ kn+mZ = mZ =⇒ kn ∈ mZ =⇒ m|kn =⇒ |x|
∣∣k =⇒ kx = 0

Thus ψ is injective. By injectivity of T , there exists g : Z/mZ → T so that the following
diagram commutes.

0 〈x〉 Z/mZ

T

ι

ψ

g

This implies that

ng(1 +mZ) = g(n+mZ) = gψ(x) = ι(x) = x =⇒ x ∈ nT

We constructed x so that x 6∈ nT , but we showed that in either of two cases, x ∈ nT . This
is a contradiction, so we conclude that T is divisible.

Proposition 0.16 (Exercise 6b). A direct product of injective modules is injective.

Proof. Let R be a commutative ring and {Mi}i∈I a collection of R-modules. Let M =∏
i∈IMi and let πi :

∏
iMi → Mi be the projection onto the ith factor. Let X, Y be R-

modules and φ : X → Y be an injective homomorphism, and let f : X →
∏

iMi be a
homomorphism. Then we have homomorphisms πif : X →Mi, so by injectivity of Mi, there
exists a homomorphism f̃i : Y →Mi making the following diagram commute:

0 X Y

Mi

φ

πif
f̃i

Then, by the universal property of the direct product, there is a unique morphism f̃ : Y →∏
iMi so that f̃πi = f̃i. In particular, f̃ is the map y 7→ (f̃i(y)). That is, the following

diagram commutes. ∏
iMi Y

Mi

πi

f̃

f̃i
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Putting these diagrams together, we get the following diagram:

0 X Y

∏
iMi

Mi

φ

f
f̃

f̃i

πi

We just need to check commutativity of the X, Y,
∏

iMi triangle. Using the commutativity
of the other triangles, for x ∈ X we have

f̃φ(x) = (f̃iφ(x)) = (πif(x)) = f(x)

Thus f̃φ = f , so the required triangle commutes. Hence
∏

iMi is injective.
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